Korean J. Chem. Eng., 27(6), 1654-1661 (2010)
DOLI: 10.1007/s11814-010-0272-x

Automatic verification of operating schedules for batch processes
using symbolic model checking: Latch model vs. real-time

Jinkyung Kim* and Il Moon**-f

*School of Chemical & Biomolecular Engineering, Georgia Institute of Technology,
311 Ferst Drive, NW, Atlanta, Georgia 30332, U.S.A.
**Department of Chemical Engineering, Yonsei University, 134 Shinchon-dong Seodaemun-gu, Seoul 120-749, Korea
(Received 3 January 2010 * accepted 17 February 2010)

Abstract—This study proposes two models for reading Gantt charts and finding embedded errors in the operating
schedules of batch processes. Two automatic techniques for finding errors, a real-time model and a latch model, are
developed using the symbolic model verifier (SMV) and are compared to verify that the schedules are error free and
to represent the scheduling information and policies. These models are designed to automatically detect embedded errors
relating to unavailability, superimpositions, and violation of intermediate storage policies in batch processes with various

intermediate storage policies.

Key words: Operating Schedule, Real-time Model, Latch Model, SMV, Batch Process

INTRODUCTION

Batch processes are useful for producing value-added multi-prod-
ucts and can rapidly satisfy consumer demands and preferences.
Research has been carried out into scheduling strategies and con-
trol techniques that reduce costs and increase profits. Increasing the
efficiency of a batch process operation makes the scheduling of that
process more complex, and the verification of the schedule plays
an important role in process safety. Schedules include various poli-
cies that take into account the nature of the production recipes and
the process units. As schedules become more complex, errors are
likely to be embedded. However, finding scheduling errors by sim-
ply analyzing Gantt charts is difficult. The error-finding procedure
must be automated in order to produce error-free operating sched-
ules [1,2].

The automation of the safety verification process provides huge
benefits compared with manual testing methods such as checklists,
hazard and operability studies (HAZOP), and fault tree analysis (FTA).
It becomes possible to avoid human error during the computation,
to test more complex systems and many scenarios, to reduce the
verification time and cost, and to address safety and operability
problems more efficiently.

Therefore, this study adopts the symbolic model verifier (SMV)
approach to automatically find errors in the operating schedules.
SMV is a computer program that decides if given logic is true or
false using CTL (computation tree logic) and BDD (binary deci-
sion diagrams) [3]. SMV is composed of a system model, assertions,
and a model checker. The system model describes the control soft-
ware, process equipment, and operating procedures. The assertions
are questions about the behavior of the system in terms of safety
and operability. The model checker determines whether the asser-
tions are satisfied by the system and supplies counterexamples if

"To whom correspondence should be addressed.
E-mail: ilmoon@yensei.ac.kr

1654

an error is detected [4].

This study focuses on using SMV to develop algorithms that rep-
resent practical operating schedules and can find scheduling errors.
The results provide information on the existence of scheduling errors
and how to identify them. This method finds all errors because it
checks all paths. The information reduces disturbances and the prob-
ability of errors embedded in complex industrial operating schedules.
The approach is effective at creating error-free operating schedules
for batch processes.

THEORY

1. Temporal Logic Model Checking

Simulators are often used to investigate the behavior of sequen-
tial chemical processes based on discrete models. However, exam-
ining the output of the simulation is usually time consuming, making
exhaustive simulations rarely feasible. Although simulations are help-
ful, in practice they cannot be used to ensure the proper behavior
of a system.

Temporal logic model checking is an alternative approach that
has recently achieved significant results. Efficient algorithms can
verify the properties of extremely large systems [5]. In these tech-
niques, specifications are written as formulas in a temporal propo-
sitional logic and systems are represented by state-transition graphs.
The verification is accomplished by an efficient breadth-first search
procedure that views the transition system as a model for the logic,
and determines whether the specifications are satisfied by the model.

There are several advantages to this approach; in particular, it is
completely automatic. An overview of the model verification is given
in Fig. 1. The model checker accepts a model description and speci-
fications written as temporal logic formulas. It then determines whether
the formulas are true for that model. Another advantage is that if
the formulas are false, the model checker will provide a counterex-
ample, i.e., an execution trace that shows why the formula is not
true. Using temporal model checking algorithms, SMV verifies the

Automatic verification of operating schedules for batch processes using symbolic model checking: Latch model vs. real-time 1655

Operating
::f:\::lre procedure Operability
N ~ — . Safety
Equipment r/ ™ rd T
System (A ti)
\descriptio) \Assertions)
S . -

— T
> ~
s Y
Model chedker (TRUE, FALSE and)
\\counterexample /

Fig. 1. Architecture of symbolic model verification.

model.
2. Symbolic Model Verifier (SMV)

Clarke [6] developed a model-based verification method. Sym-
bolic model checking is an algorithmic means of verifying that a
finite-state, sequential model satisfies temporal logic specifications
[6]. The algorithms use symbolic representations to denote sets of
states and legal transitions between states. The use of symbolic repre-
sentations allows the routine verification of properties in models
with as many as 10" states [5]. Boolean formulas can be represented
by binary decision trees. The nodes in the decision tree correspond
to the variables of the formula. The descendants of each node are
labeled true or false. The value of the formula for a given assign-
ment of values to the variables can be found by traversing the tree
from root to leaf. At each node, the descendant labeled with the value
of that variable is chosen. Internal SMV algorithms eliminate redun-
dant information in the structure and order the variables to compact
the size of the BDD [3]. Counterexamples may be generated when
certain classes of specifications are discovered to be false for the
model, and the counterexample function of symbolic model check-
ing is useful when analyzing and correcting faults.

Moon [7] applied the SMV technique to verify the control logic
of a chemical plant. The modeling objects are discrete events such
as valves, pumps, and the level of the tank. Later, Moon [8,9] re-
searched SMV verification methods for a chemical process based
on a PLC (programmable logic controller) [8,9]. Probst et al. (1996)
proposed a method that combines unit modules to verify the entire
process. It is applied to a solid transfer system, leak detection, and
a general furnace system [10,11].

In an approach that is different from those of the above studies
we develop verification algorithms for the scheduling of a batch
process by modeling the time.

3. Scheduling of Batch Processes

Batch processes are used in the manufacture of specialty chemi-
cals, pharmaceutical products, foods, and certain polymers [3]. Since
the production volumes are usually low, batch plants are often multi-
product facilities in which the various products share the same equip-
ment. This requires that the production in these plants be scheduled.
Many algorithms have been introduced to optimize the scheduling of
batch processes. Elaborate techniques are needed because batch pro-
cesses have become increasingly complex and are now widely used
for fine chemicals.

The classifications of schedules for batch processes vary. Plants
can be classified as flowshop plants and jobshop plants. Flowshop
plants follow the same processing sequence; jobshop plants have
different sequences. Transfer policies can be classified as ZW (zero-
wait), UIS (unlimited intermediate storage), NIS (no intermediate

storage), FIS (finite intermediate storage), and MIS (mixed inter-
mediate storage) [12].

In general, the Gantt chart is used to represent the schedule of a
batch process. It is convenient to prepare but cannot express com-
plex schedule characteristics. Furthermore, verifying that the sched-
ule meets the needs of units and products is complex. Hence, auto-
matic verification algorithms are required for efficiency, feasibility,
and safety [13].

DEVELOPMENT OF SMV MODELS
FOR GANTT CHART

SMV expresses the state with the state-transition. Every state is
characterized by the state of its variables. The state-transition gives
a convenient solution when every state switches with a specific re-
lation to their variables. The state does not correspond to the time
interval, because a transition may require more than one time inter-
val. For example, a variable transition system can be expressed by
the states S={s,, S,, S5, Ss, S; - - } together with propositions for each
state s={t, pi, p> pi}. The subscript of s indicates the state num-
ber for the state transition. An algorithm can be developed to im-
plement the transitions shown in Eq. (1).

$=1{0, 1,0, 0}
$,={1,0,1,0} (i,1,0,0) if mod(i/3)=0 for Vi=0
$={2,0,0,1} or s=1<(i,0,1,0) if mod(i/3)=1 for Vi>0 (1)
$={3,1,0,0} (i,0,0,1) if mod(i/3) =2 for Vi=0
s,={4,0,1,0}

An attempt at an algorithm for the transitions of Eq. (1) is given in
Fig. 2.

In SMYV, the above algorithm does not give the expected result.
The actual result is illustrated in Fig, 3.

This is caused by the difference between state transition and time
transition. In Fig. 3, the variable t is not matched with state sub-
script i.

For n =0 to Upper Bound

If mod(i/3)=20 then
p,=1and p,=0and p;=0
Elself mod(i/3)=1 then
p,=0and p,=1and p},=10
Elself mod(i/3)=2 then
p,=0and p,=0and p,=1
End If

i=i+1
Print s,(i,p;, p5. p3)
Next n
Fig. 2. Algorithm for variable transition.
Korean J. Chem. Eng.(Vol. 27, No. 6)

1656 J. Kim and I. Moon

s, ={0,0,0,0}
=1{0,1,0,0}
s, ={1,0,1,0}
s, ={2,00,1}
={3,1,0,0}

Fig. 3. Results of variable transition in SMV.

= = = Read-only path

=" Write-only path

Process Timer (i) ———» Process Timer (i+tl) ——»

rd i
F ra
r ra
> »
Schedule (i, p',.p°,p°, -..) Schedule (i+1, p', 0% 1 P41)
A A
’ s

’ 4
s::{p}r’p?r’psr’ } Si4s ={p;i+f’p2:+f’p31+f’ }

Fig. 4. Real-time algorithm.

Synchronizing the state transition and the time transition is the
key to expressing the real-time characteristics of the schedule for a
batch process. We developed two algorithms to solve this synchro-
nization problem. The real-time algorithm has a timer in each unit
module and the latch algorithm has a switch in the main module to
match the state with the time.

1. Real-time Algorithm

The first algorithm is developed for the real-time model. For this
model, the total makespan is divided into time units of the same length.
In each time unit, the state of variables is maintained and not renewed.
To renew the variables, another module is introduced. Because of
limitations on the input/output of variables in SMV, read-only and
write-only modules are separated. Two modules, the process timer
and the schedule, realize this. Fig. 4 represents path transfers and
integrations of variables for two modules. The process module is a
timer that operates throughout the process and the schedule mod-
ule is a unit timer that counts the time related to each product and
unit. The schedule module refers to the process timer to guarantee
the exact transition time.

Modules for each unit should be related to the process module
and the schedule module. The algorithm based on the real-time model
is more complex than the latch algorithm described in the next section.
2. The Latch Algorithm

The second algorithm, the latch algorithm, is based on the latch
variable, which is the variable that maintains the current state of
the variable until it is initialized by the variable to be defined as the
next state. Fig. 5 illustrates this using RLL (relay ladder logic).

In Fig. 5, each rung represents a time interval. The serial transi-
tion of the TRUE value of variables indicates the transition of time.
However, the condition that sets the next state to TRUE can occur
at different times. The solution for this problem is the introduction
of precondition variables that distinguish the same condition that

November, 2010

|: /H' : Normally closed contact

| | : Normally open contact

R1
I I /H/ (O— New@or-mir2acx3)
R3 R2
| |
I 'R
R2 I I I J/ Yy
Next(R3):=(R2|R3)&(~R4)
|1 /'/ I R4 URS
| |
I 1 Rs

Fig. 5. Latch algorithm.

R1 P1
| | /|F/l/ O Next(R2):=({(R1&P1)|R2)&(~R3)
. ' IR3 URQ

| |
| I'r2

il [B ~

l I l [/‘/JI/Rd UR3 Next(R3):=((R2&P2)|R3)&(~R4)
| |
I T Rs

Fig. 6. Latch algorithm with precondition variables.

should be achieved at different times as a different job. Fig. 6 uses
RLL to illustrate the introduction of precondition variables.

In the latch model, the time intervals are not the same length. The
input and output time of each unit is the standard for optimized num-
ber of time unit. Furthermore, all the algorithms for each unit and
product can be developed in the same module.

3. Preparation of Assertions

The real-time model and the latch models are developed to ex-

press the Gantt chart using SMV. To verify a schedule, assertions

DL

(b) AF f:{is inevitable

TR

(d) AG f: fis invariant

@

(a) EF f : f potentially holds

?%

(c) EG f: f holds every states
in some path

Fig. 7. Assertions in CTL (@: f, O: ~).

Automatic verification of operating schedules for batch processes using symbolic model checking: Latch model vs. real-time 1657

must be developed. SMV provides CTL (computational tree logic) for
this purpose. The simplest CTL formula consists of just an atomic
proposition. If p is an atomic proposition, then p is TRUE for a state
s if and only if p labels s: that is, p is an element of P(s). Formulas
can be built upby using the standard operators of negation (written
~), and (written &), and or (written |). CTL is distinguished from
elementary propositional logic by the model operators. Fig. 7 illus-
trates the representation of assertions in CTL.

With CTL, assertions are developed to verify that a given sched-
ule meets the needs in characteristics of unit, product, and other re-

cipes.
CASE STUDY

1. Multi-product Batch Process

One of the easiest ways to compare the effectiveness of the two
models is to apply the same batch-process schedule. The given Gantt
chart describes the schedule for three products (A, B, C) and three
stages (Stage 1, Stage 2, Stage 3). The processing time for each pro-
duct is given in Table 1. The target process makes three products,
A, B, and C, in the sequence A—B—C—>A—>B—C. The pro-
cess uses FIS intermediate storage policy. FIS policy assumes that
the batch can be stored in a finite intermediate-storage tank in order
to shorten the processing time. The intermediate-storage tank of

is required. The state of the storage tank module has a variable that
indicates whether it is full or empty. The relation between the state
of Stage 1 and that of Stage 2 is the basis of the value of the variable.
Figs. 9 and 10 show the algorithm for these sequences.

For the entire program, the process timer module, the schedule
module, the storage tank module, and the modules for each stage
are integrated in a main module.

The assertion to verify whether the schedule is feasible is:

Assertion 1.

While Stage 1 is processing, it is not possible for the storage tank
to be full when Stage 1 still contains the intermediate products.

CTL 1.

AG(!(!(stage01_schedule.condition=off) & !(storage.condition=
empty) & !(reactor.condition=0)))

1-2. Latch Model for Given Gantt Chart

In the latch model, the makespan is divided into sections and all
the unit states including the storage tank are expressed with latch
variables. All the unit states are changed by the value of the latch
variable without a CASE statement. This is easier to realize than
the real-time model because the algorithm reads only the Gantt chart.
However, the number of variables including the latch variables ex-
ceeds that of the real-time model; this increases the number of BDD

the target process is located at Stage 1 and has the same capacity as Product A
the unit ofStage 1. Product B
If there is an error in the given Gantt chart, an assertion is needed Stage
to detect the error. For this case study, an error is intentionally in- h —
troduced. The final Gantt chart with the error is shown in Fig. 8. stage 1 = -
1-1. Real-time Model for Given Gantt Chart ~1
To describe the transfer procedure, a module for the storage tank i i
— —
Stage 2 — I
Table 1. Processing time for each product
- -
Product A B C Stage 3 HEEg| HEEE
Stage
Stage 1 3 1 2
Stage 2 4 5 Unit time (h)
Stage 3 2 4 5 Fig. 8. Gantt chart with error.
Stage01 o —»|Schedule (time, condition) |
A_on_time p
Stage 01 : o iti
Process B‘_:g:_ﬁm :4'{ Schedule (time, condltmn)‘ « COHd1t|0n= Storage tank
Timer "
i‘“ge : ﬁ—P[Schedule (time, condition)‘
_on_time
U
: Stage03 &+———»|Schedule (time, condition)| | condition
A_on_time 4—[1 : ‘ “ » Unit Condition
upper | :
Stage 03 o . e
C on time ﬂ%medule (time, condition) ‘

Fig. 9. Structure of schedule in SMV.

Korean J. Chem. Eng.(Vol. 27, No. 6)

1658

>
» Storage = empty

J. Kim and I. Moon

LYy

Stage01 = A_off | Stage01 =B_off | Stage01 = C_off

No

Stage02 = ~off
& storage = emp

Yes

Stage02 = ~of f
& storage = emp

Yes Yes
Storage = A_full Storage = B_full Storage = C_full
Stage02 = A _ Stage02 =B_on Stage02 = C_on
Yes

No

Stage02 = ~off
& storage = empty

Yes

Fig. 10. Algorithm for FIS storage module.

Table 2. Results of comparison

Real-time Latch

model model
BDD nodes allocated 88002 11815120
Bytes allocated 2359296 189857792
BDD nodes representing transition relation 36078 6008560

nodes and the detection time.

The assertion is similar to that for the real-time model.
1-3. Result Comparison

The latch model can be prepared more easily than the real-time
model. Because of the process timer module and the schedule mod-
ule, the real-time model has three distributed modules. In the latch
model, all variables can be expressed as latch functions in one main
module.

Both models find errors successfully. However, the real-time model
uses fewer nodes and less memory than does the latch model, be-
cause the larger the verification time, the more variables are needed
in the latch model. If the makespan of the Gantt chart is larger, the
difference increases. Table 2 indicates that the real-time model is
more efficient than the latch model.

2. Multi-purpose Batch Process

The real-time model can more effectively realize the real-time
characteristics in a batch-process schedule. However, its applica-
tion depends on the assertions for the given system. With multiple
assertions, the analyzer can detect all the possible errors simulta-
neously. In addition, several specific algorithms should be introduced
to detect all possible paths.

The given Gantt chart indicates the wide application of this meth-
od. It has three processing stages for three types of products, as shown
in Fig. 11. Each product has its own production path and the heater
supplies steam to stages 2 and 3 simultaneously. The different path
for each product and the limit on the capacity of the steam increase

November, 2010

A: ZW Policy
B : UIS Policy)
C : UIS Policy PO
| 4 A 4 h |
A — = > ? > o > ? > A
E . I k-]
B> % > g s e
c = »| 2 1K | 8 |— .

" Reactor01, separator and reactor02 own the steam in common.

Fig. 11. Multipurpose plant with steam generator.

the complexity of estimating the safety and feasibility.
2-1. Detection Algorithms for All Possible Paths

In this case, all possible models are verified by introducing an
algorithm with a CASE statement. The schedule that will be veri-
fied is already designed in general cases. To detect all the paths that
can be followed by the input raw materials, the concepts of an unde-
termined variable and exclusive OR are introduced. The undeter-
mined variable is a feature of SMV; it gives the probability of multi-
ple paths. The order of the input raw materials changes the path that
should be followed to finish the processing because of the varied
processing times and procedures for different productions.

Another approach for expressing a multi-path system is the meth-
od of exclusive OR. The exclusive OR is defined as a logical notation
that is TRUE if exactly one of the propositions in the current state
is TRUE. The exclusive OR proposition can be composed using
the and and or propositions.

2-2. Development of Unit Module

After the initial value of processing material is determined by
the undetermined variable or the exclusive OR proposition, the rest
of the system can be developed by using the real-time model, which
is more efficient than the latch model. However, the schedule mod-
ule does not know the production sequence for the various initial
raw materials; it can work from the previous state using a CASE

Automatic verification of operating schedules for batch processes using symbolic model checking: Latch model vs. real-time

1659

A:{0,1},B:{0,1},C: {0,1}, (A, B, C: Random variable)
3 [

Y

Yes

Mixer=B on | C_on

Yes

Mixer=A on | C_on

es
No

No No

Yes

Mixer=B on | A_on

Yes

|Mlxer : {C_on, C_ol'l'}|<

_.

—_Separator=B_on | A_on

No

|Separator :{C_on,C_off} |-<

=]

Reactor02=B_on | C_on

Yes Yes
No

No

Reactor02:{C_on,C_off} |

Fig. 12. Algorithm for multipurpose batch plant.

statement. Fig. 12 illustrates the CASE statement and the algorithm
for all schedules.

Each unit module is developed in the real-time model. For feasi-
bility, only one product can exist in a unit at the same time. Thus,
this model cannot violate feasibility.

2-3. Assertions

An assertion must be prepared to give the limitation imposed by
the common use of the steam.

Assertion 1

It cannot simultaneously occur that reactorO1 is processing B,
reactor02 is processing A, and the separator is processing C.

CTL 1

AG(!(Reactor02=A_on & Reactor01=B_on & Separator=C on)))

In addition, product A should follow the ZW policy. Three asser-
tions are therefore added.

Assertion 2

It cannot occur that reactor01 is processing directly after the mixer
finishes processing A.

CTL2

AG(!(Mixer=A_off & (Reactor01=B_on | Reactor01=C on))))

Assertion 3

It cannot occur that the separator is processing directly after reac-
tor01 finishes processing A.

CIL3

AG(!(Reactor01=A_off & Separator=C on)))

Assertion 4

Korean J. Chem. Eng.(Vol. 27, No. 6)

1660 J. Kim and I. Moon

—- gpecification AG (!/(Reactor02 = A_on & Reactor0l = B_o... is false
-- as demonstrated by the following execution sequence
state 1.1

Ab =10

BE=0

cCc=0

Stant=0

Mixer = off
Reactor0l = off
Seperator = off
Reactor(2 = off
state 1.2

Ab =1

state 1.2

Ad =10

Stant = A_start
state 1.4

CC=1

Start=0

Mixer = &4_on
state 1.5

cCc=0

Start = C_stant
Mixer = &_off
state 1.6

BB =1

Start =0

Mixer = C_on
Reactor0! = 4_on
state 1.7

BE =0

Start = B_start
Mixer = C_off
Reactor0l = a_off
state 1.8
Start=0

Mixer = B_on
Reactor0l = C_on
Seperator = A_on
state 1.9

Mixer = B_off
Reactor0l = C_off
Seperator = A_off
state 1,10

Mixer = off
Reactor01 =B_on
Seperator = C_on
Reactor02 = A_on

Fig. 13. Result of verification for common use of steam.

It cannot occur that reactor02 is processing directly after the sep-
arator finishes processing A.

CTL4

AG((!(Separator=A_off & (Reactor02=B_on | Reactor02=C on))))

Assertion 1 expresses the unit limitation and Assertions 2 to 4
express the product limitations.

2-4. Results of Verification

Figs. 13 and 14 show the results of verification for each asser-
tion, and they represent false assertions. At state 1.10 in Fig. 13,
reactor01 processes product B, the separator processes C, and reac-
tor02 processes A simultaneously. This result indicates that there is
a shortage of steam when the schedule follows the sequence A—
C—B. The designer of this process should therefore remove the
sequence A—C—> B from consideration.

Fig. 14 represents Assertion 2, about ZW policy. In Fig. 14, reac-
tor01 continues processing product B at state 1.7 and the mixer fin-
ishes processing product A. Product A should next be processed
by reactor01, but reactor0O1 is busy with B. This violates the asser-
tion that product A should follow a ZW policy. This error occurs
when the sequence is B—A. The designer should therefore avoid
the sequence that produces A after producing B.

November, 2010

-- gpecification AG (/{Mixer = &_off & (Reactordl =B_on ... is false
-- as demonstrated by the following execution sequence
state 1.1:

Ad =0

EB=0

cCc=0

Start=0

Mixer = off
Reactor(l = off
Seperator = off
Reactor02 = off
state 1.2:

BB =1

state 1.3

BB =0

Start = B_start
state 1.4

Al =1

Start=0

Mixer = B_on
state 1.5

Af =10

Start = 4_start
Mixrer = B_off
state 1.6
Start=0

Mixer = A_on
Reactor0l = B_on
state 1.7

Mixer = 4_off

Fig. 14. Result of verification for ZW policy.

CONCLUSIONS

For complex batch-processing scheduling, SMV is an appropri-
ate technique for verifying safety and feasibility. It can be applied
after the schedule has been developed. After verification, a coun-
terexample aids the redesign of the scheduling. This procedure is
introduced in Fig. 15. In Fig. 15, the procedure for choosing an object
for the schedule provides the assertion and it is converted to CTL.
The Gantt chart that can be readily handled but not easily applied
to complex batch processes is converted to an SMV algorithm. The
real-time model is proposed for this conversion because it has higher
computational efficiency than the latch model. Complex character-
istics such as different unit capacities and different transfer policies
can be verified with the real-time model. An advantage of this tech-
nique is that SMV is fully optimized. In addition, the computational
requirements are low, reducing the computing resources needed. If
a FALSE value is produced for any verification, the counterexam-
ple created can provide a hint for the redesign of the schedule. The

‘ Choosing object for schedule ‘
*Property of unit I

+Quantity of resource
+Property of product Preliminary desigmng schedule

*Transfer policy !
l Optimizing the schedule

. Counterexample
‘ Preparing Gantt chart ‘
!
Assertions in CTL H ’;

Verifying the schedule
l Detailed designing schedule ‘

!

Fig. 15. Algorithm for verification of schedule of batch plant.

Automatic verification of operating schedules for batch processes using symbolic model checking: Latch model vs. real-time 1661

application of the algorithm with this verification loop can improve

the safety of batch-processing plants.
REFERENCES

1. J. Kim, H. Lee and I. Moon, The 8" APCChE Congress, Seoul,
Korea (1999).

2. H. Lee, J. Kim and I. Moon, AIChE Annual Meeting, Dallas, Texas
(1999).

3. A. Reeve, Process Engineering, 73, 33 (1992).

4.]J. Kim and I. Moon, Comp. Chem. Eng., 24, 385 (2000).

5.J.R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill and J. Hwang,
In Proceedings of the Fifih Annual IEEE Symposium on Logic in
Computer Science (1990).

6. E. M. Clarke, E. A. Emerson and A. P. Sistla, ACM Trans. on Pro-

gramming Lang. Sys., 8, 244 (1986).

7. 1. Moon, G J. Powers, J. R. Burch and E. M. Clarke, AIChE J., 38,
66 (1992).

8. 1. Moon, D. Ko, S. T. Probst and G J. Powers, J. Chem. Japan, 30,
13 (1997).

9. 1. Moon, IEEE Control Systems, 14, 53 (1994).

10. S. T. Probst, G J. Powers, D. E. Long and 1. Moon, Comp. Chem.
Eng., 21,417 (1997).

11. S. T. Probst and G J. Powers, AIChE Annual Meeting, San Fran-
cisco, CA (1994).

12. L. T. Biegler, I. E. Grossmann and A. W. Westerberg, Systematic
Methods of Chemical Process Design, Prentice Hall, Englewood-
cliffs, NJ, 187 (1997).

13. D. Ko and I. Moon, Comp. Chem. Eng., 21, 1067 (1997).

Korean J. Chem. Eng.(Vol. 27, No. 6)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000410064006f00620065002000500044004600200064006f00630075006d0065006e0074007300200062006500730074002000730075006900740065006400200066006f007200200068006900670068002d007100750061006c0069007400790020007000720065007000720065007300730020007000720069006e00740069006e0067002e002000200043007200650061007400650064002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000410064006f00620065002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

